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Abstract—This work proposes a novel electronic voting pro-
tocol that achieves both voter privacy and end-to-end verifi-
ability. This scheme leverages linkable ring signatures to en-
sure voter anonymity while preventing double-voting, com-
bined with Paillier homomorphic encryption to preserve vote se-
crecy during tallying. Crucially, this work enforces that each
ciphertext encodes a valid binary vote via a non-interactive
zero-knowledge (NIZK) proof. This work describes the NIZK
proof both mathematically and via explicit Python code. The
combination of these components yields a receipt-free voting
system in which any observer can verify the correctness of the
published tally without learning individual votes. In a com-
parative analysis, this work contrasts this protocol with Be-
naloh–Tuinstra [4] and Tsang–Wei [7], demonstrating that this
scheme uniquely integrates anonymous authentication with
homomorphic tallying and strong ballot correctness proofs. Se-
curity arguments and efficiency evaluation indicate that this
protocol is practical and provides rigorous privacy and verifi-
ability guarantees.

Keywords—Non-Interactive Zero Knowledge Proofs; Link-
able Ring Signature; Secure & Anonymous E-Voting

1 Introduction

Secure electronic voting must reconcile conflicting goals: preserv-
ing voter privacy while allowing public verifiability of election out-
comes. Traditional schemes based on mix-nets or homomorphic
encryption achieve privacy, but often at the expense of either com-
plex infrastructure or insufficient voter anonymity. For example,
Chaumian mix-nets obscure the link between ballots and voters but
require trusted mix servers, whereas homomorphic schemes (e.g.
based on Paillier encryption) allow tallying without decrypting in-
dividual votes[2]. However, simple homomorphic voting proto-

cols are vulnerable to voters revealing secret randomness (creat-
ing a receipt) and may not provide strong anonymity. The notion
of receipt-freeness was introduced by Benaloh and Tuinstra [4],
who designed a multi-authority voting protocol intended to prevent
vote-buying, although subsequent analysis found it to be vulnera-
ble [5]. More recently, linkable ring signatures have been proposed
to provide anonymous credentialing: Tsang and Wei [7] introduced
a short linkable ring signature (LRS) scheme and built an e-voting
system with it, achieving efficient tallying and public verifiability
even in worst-case vote distributions.

This work combines the advantages of these techniques. This
protocol uses a linkable ring signature scheme to allow a voter to
sign a ballot anonymously on behalf of the entire electorate, while
ensuring that two votes by the same voter can be detected (through
the linking tag) and hence disallowed. Each vote is encrypted un-
der a Paillier public key, taking advantage of its additive homo-
morphism for tallying. To guarantee that a voter cannot cheat by
encrypting an invalid value (e.g. a vote for multiple candidates),
this work employs a NIZK proof that the ciphertext encodes either
0 or 1. This proof is constructed via a standard sigma-protocol
made non-interactive by the Fiat–Shamir transform [9]. The com-
bination yields a voting protocol that is privacy-preserving (votes
are ciphertexts and signers are anonymous) and verifiable (anyone
can check the ring signatures and NIZKs, then homomorphically
tally and decrypt).

This main contributions are summarized as follows:

• Protocol Design: This work designs a complete e-voting pro-
tocol incorporating linkable ring signatures for anonymous
eligibility and double-vote prevention, Paillier encryption for
privacy-preserving tallying, and a binary vote correctness
NIZK proof to enforce well-formed ballots.

• NIZK Construction: This work formally describes and
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mathematically derives the non-interactive zero-knowledge
proof for a ciphertext encoding 0 or 1. This work includes ex-
plicit equations and step-by-step derivation, as well as a fully
annotated Python implementation of the proof generation and
verification.

• Security Analysis: This work analyzes the protocol’s secu-
rity properties (privacy, authenticity, verifiability) and pro-
vides a comparison table contrasting this design with the Be-
naloh–Tuinstra scheme [4] and the Tsang–Wei scheme [7].
This work shows that the protocol enhances both pri-
vacy (through ring anonymity) and correctness enforcement
(through NIZK proofs) relative to those prior works.

• Evaluation: This work estimates the computational and com-
munication costs of this protocol, discussing the practicality
of key operations (Paillier encryption/decryption, ring signa-
ture generation/verification, and NIZK proof) for realistic pa-
rameter sizes.

The remainder of this paper is organized as follows. Section 2
reviews cryptographic primitives used. Section 3 surveys related e-
voting protocols. Section 4 details this proposed scheme, including
mathematical description of the NIZK proof and its Python realiza-
tion. Section 5 analyzes security, with a comparative table. Sec-
tion 6 evaluates performance. This work concludes in Section 7.

2 Preliminaries

This work reviews the essential building blocks of the protocol: the
Paillier cryptosystem, linkable ring signatures, and non-interactive
zero-knowledge proofs.

2.1 Paillier Cryptosystem

The Paillier public-key cryptosystem [2] operates over an RSA
modulus N = pq, where p,q are large primes. The public key is
(N,g) (often g = N +1) and the private key is λ = lcm(p−1,q−
1). Encryption of a message m∈{0,1, . . . ,N−1}with randomness
r ∈ Z∗N yields ciphertext

C = gm rN mod N2.

Decryption recovers m by computing Cλ mod N2 and scaling.
Paillier encryption has the additive homomorphic property: the
product of ciphertexts decrypts to the sum of the plaintexts. In par-
ticular, if C1 = gm1rN

1 and C2 = gm2rN
2 , then C1 ·C2≡ gm1+m2(r1r2)

N

(mod N2), which decrypts to m1+m2 mod N. This allows votes to
be tallied without revealing individual ballots. The security of Pail-
lier relies on the decisional composite residuosity assumption [2].

2.2 Linkable Ring Signatures

A linkable ring signature (LRS) [7] allows a signer to anony-
mously sign on behalf of a set (ring) of public keys. The
signature does not reveal which member signed, providing
anonymity akin to a group signature without a group man-
ager. Additionally, linkability means that if the same se-
cret key signs two different messages (or the same message
twice), the two signatures are publicly linkable via a common
tag. This property deters double-signing without identifying the
signer by name. Formally, an LRS scheme consists of algo-
rithms (LRS-KeyGen,LRS-Sign,LRS-Verify,LRS-Link), where
LRS-Link outputs YES if two signatures are by the same signer
(same key) in the same ring.

In this protocol, each voter has a public/private key pair. The
ring is taken as the collection of all eligible voters’ public keys.
When a voter signs a ballot, they produce a linkable ring signa-
ture σ on the ballot and accompanying ciphertext. Any observer
verifies σ against the full set of keys, confirming membership of
the signer without knowing which key. If a voter signs twice,
the LRS-Link algorithm will detect the reuse of the same secret
key, and the second ballot can be rejected. This work adopts the
short LRS construction of Tsang & Wei [7], which yields signa-
tures of constant size (independent of ring size) and security under
the Link-DSA assumption.

Each user selects a private key x ∈ Zq at random and computes
the public key P = xG, where G is a generator of an elliptic curve
group of order q. The key image is defined as

I = x ·Hp(P),

where Hp : {0,1}∗→G is a hash-to-curve function. The key image
I binds signatures from the same key without revealing the key
itself.

To sign a message m with anonymity among a ring of n public
keys {P0, . . . ,Pn−1}, suppose the signer’s secret key corresponds
to index s. The signer picks u ∈R Zq uniformly at random and
computes

Ls = uG, Rs = uHp(Ps).

Let H : {0,1}∗ → Zq be a cryptographic hash function (modeled
as a random oracle) used for challenge generation. The signer ini-
tializes the challenge chain by computing

c(s+1) mod n = H
(
m∥Ls

)
.

Then for each i = s+ 1,s+ 2, . . . ,s− 1 (indices taken mod n), the
signer chooses a random ri ∈R Zq and computes

Li = riG+ ciPi, Ri = riHp(Pi)+ ciI,

and updates
ci+1 = H

(
m∥Li

)
.
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After completing the loop back to index s, the signer sets

rs = u− csx (mod q).

The signature consists of the key image I, the initial challenge
c(s+1) mod n, and the responses ri for i = 0, . . . ,n−1.

To verify a signature on m, the verifier recomputes for each i =
0, . . . ,n−1:

L′i = riG+ ciPi, R′i = riHp(Pi)+ ciI,

and sets ci+1 = H(m∥L′i). The signature is accepted if and only
if the final challenge equals the initial one (i.e., the challenge loop
closes, so cn = c0 when indices are considered modulo n).

2.3 Zero-Knowledge Proofs

Zero-knowledge proofs allow a prover to convince a verifier of
a statement without revealing any additional information beyond
the validity of the statement. In particular, this work uses a non-
interactive zero-knowledge (NIZK) proof in the Random Oracle
Model via the Fiat–Shamir heuristic [9]. Concretely, to prove
knowledge of a secret satisfying some relation, the prover simu-
lates a three-move Σ-protocol by choosing random commitments,
computing a challenge as the hash of these commitments (and the
statement), and then responding accordingly. The verifier checks
that the commitments and responses satisfy the relation given the
challenge. By the Fiat–Shamir transform, this yields a proof that
anyone can verify by recomputing the hash as the challenge, with-
out interaction.

In this scheme, we require a proof that a given Paillier cipher-
text encrypts either 0 or 1 (a binary range proof ). This work con-
structs a specialized OR-proof for the statements “C = g0rN” or
“C = g1rN”, detailed in Section 4. This enforces vote integrity (no
invalid votes) while preserving privacy.

3 Related Work

E-voting protocols with strong privacy and verifiability have been
widely studied. Mix-net based schemes [1] achieve unlinkability of
ballots, and homomorphic encryption schemes [2, 3] allow public
tallying. Benaloh and Tuinstra [4] introduced multi-authority ho-
momorphic voting protocols aiming for receipt-freeness, but Hirt
and Sako [5] showed that their scheme could still be coerced.
Cramer et al. [3] provided efficient homomorphic protocols with
proofs of well-formed ballots. Other works (e.g. [6, 3]) consider
mix-nets or blind signatures to mitigate coercion. However, those
approaches either require complex distributed trust or can only par-
tially prevent receipt attacks.

Ring signatures have been applied to e-voting to enhance
anonymity. The original ring signature by Rivest et al. allows a

user to sign anonymously among a chosen group. Linkable vari-
ants [8, 7] add double-sign detection. Tsang and Wei [7] explicitly
designed a short linkable ring signature scheme and used it to build
an e-voting protocol. Their scheme provides efficient tallying and
supports write-in votes, but does not by itself include a proof of
vote correctness. This protocol can be viewed as building on this
idea: this work uses a linkable ring signature to achieve anonymity
and double-vote prevention, but additionally incorporates Paillier
encryption and an explicit NIZK proof to guarantee vote validity.

In summary, this work synthesizes these advances: like [7], this
work achieves anonymous and verifiable voting via ring signatures,
and like [2, 3] this work uses homomorphic encryption for tally-
ing. However, this work uniquely enforces vote well-formedness
(binary votes) via a NIZK proof, offering stronger correctness as-
surance without compromising privacy.

4 Proposed Scheme

Assume an election with n eligible voters. Each voter i has a key
pair (ski,pki) for a linkable ring signature scheme [7]. Let the set
of all public keys be R = {pk1, . . . ,pkn}. A central authority gen-
erates a Paillier key pair (PK,SK) with public key PK = (N,g) and
private key for decryption. These parameters are publicly known.

Voting proceeds as follows. Voter i with secret key ski chooses
a binary vote v ∈ {0,1}. They perform:

1. Encrypt: Pick random r ∈ Z∗N . Compute the Paillier cipher-
text

C = gv rN mod N2.

This encrypts v under PK.

2. Prove: Compute a non-interactive zero-knowledge proof π

that C encrypts either 0 or 1. This proof is constructed by an
OR-sigma protocol as follows (details below).

3. Sign: Form the message M = (C,π) and compute a link-
able ring signature σ ← LRS-Sign(ski;R,M). This yields
an anonymous signature proving that some member of R
(namely voter i) signed M, with a linkability tag to detect re-
peats.

4. Publish: Send (C,π,σ) to the public bulletin board. All par-
ties (voters and observers) then verify the signature and proof.

After voting, anyone can perform the tally:

1. Verify Ballots: For each posted (C,π,σ), check that σ is a
valid ring signature on M = (C,π) with respect to R, and
check that the NIZK proof π verifies (see below). Reject
any ballot failing these checks or any second ballot linked (by
LRS-Link) to the same secret key.
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2. Aggregate: Multiply all valid ciphertexts:

Ctot = ∏
valid C

C mod N2.

Due to Paillier’s homomorphism, Ctot is an encryption of the
sum of all votes.

3. Decrypt: The authority (or a threshold of authorities) uses
Paillier decryption to recover the tally ∑i vi. Publish the total
and a proof of correct decryption if desired.

This completes the protocol. Now focus on the NIZK proof and
its implementation.

4.1 NIZK-Proof of Binary Vote

The goal is to prove that the ciphertext C = gvrN encrypts a valid
vote v∈ {0,1}without revealing v or r. Equivalently, prove knowl-
edge of r0 or r1 such that

C = 1 · rN
0 or C = g · rN

1 .

This is a disjunction of two statements. This work constructs a
sigma-protocol that proves the OR of these statements, and makes
it non-interactive via Fiat–Shamir.

Concretely, the voter does the following for their chosen vote
v ∈ {0,1} (with corresponding randomness r):

1. Choose random values. If v= 0, let r0 = r be the true random-
ness (so C = rN

0 ) and pick random u0 ∈Z∗N . Also pick random
challenge e1 ∈ {0, . . . ,N− 1} and random response z1 ∈ Z∗N .
If v = 1, let r1 = r (so C = grN

1 ), pick random u1 ∈ Z∗N , and
random e0,z0 instead.

2. Form commitments:

A0 =

{
uN

0 mod N2, if v = 0,
(gz0)(C)−e0 mod N2, if v = 1,

A1 =

{
gz1(C/g)−e1 mod N2, if v = 0,
uN

1 mod N2, if v = 1.

Here gz1(C/g)−e1 means gz1 · (C/g)−e1 mod N2. Note
(C/g) = rN

1 when v = 1, and C/1 = rN
0 when v = 0.

3. Compute the challenge e as the hash e = H(A0,A1,C) (mod-
eled as random), and split it: if v= 0 set e0 = e−e1 (mod N);
if v = 1 set e1 = e− e0 (mod N).

4. Compute responses:

z0 =

{
u0 · r−e0

0 mod N, v = 0,
z0, v = 1 (simulated),

z1 =

{
z1, v = 0 (simulated),
u1 · r−e1

1 mod N, v = 1.

The proof π consists of the tuple (A0,A1,e0,e1,z0,z1). A verifier
checks:

e ?
= e0 + e1 (mod N),

A0Ce0 ≡ zN
0 (mod N2),

A1(C/g)e1 ≡ gz1 (mod N2).

These equations ensure that either C = rN
0 or C = grN

1 was proven
without revealing which case is real. This construction yields a
non-interactive ZK proof of the binary plaintext. The security fol-
lows from the standard OR-proof arguments and the Fiat–Shamir
heuristic [9].

4.2 Example Python Implementation

The following Python code illustrates the Paillier encryption and
the NIZK proof for a binary vote. (In practice, one would use a
cryptographic library and secure hashing for the challenge.) This
work presents the full code of proof generation and verification for
clarity:

import random , math

# Ex tended GCD f o r modular i n v e r s e
def egcd ( a , b ) :

i f b == 0 :
re turn ( 1 , 0 , a )

x2 , y2 , g = egcd ( b , a % b )
re turn ( y2 , x2 − ( a / / b )* y2 , g )

def modinv ( a , m) :
x , y , g = egcd ( a , m)
i f g != 1 :

r a i s e E x c e p t i o n
( ”No modular i n v e r s e ” )

re turn x % m

# Example P a i l l i e r key ( s m a l l
# p r i me s f o r i l l u s t r a t i o n )
p = 61
q = 53
N = p * q
g = N + 1
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N2 = N * N # modulus Nˆ2

# P a i l l i e r e n c r y p t i o n
# o f b i t m (0 or 1 )
def e n c r y p t (m) :

r = random . r a n d r a n g e ( 1 , N)
C = pow ( g , m, N2 ) *

pow ( r , N, N2 ) % N2
re turn C , r

# Genera te a NIZK p r o o f t h a t C
# e n c r y p t s 0 or 1 under P a i l l i e r
def p r o v e b i n a r y (C , m, r ) :

i f m == 0 :
# Case : r e a l i s C = r0 ˆN
r0 = r
# S i m u l a t e S1 branch by
# c h o o s i n g e1 , z1 a t random
u0 = random . r a n d r a n g e ( 1 , N)
A0 = pow ( u0 , N, N2 )
e1 = random . r a n d r a n g e ( 0 , N)
z1 = random . r a n d r a n g e ( 1 , N)
i n v g = modinv ( g , N2 )
H = (C * i n v g ) % N2 # = r0 ˆN
# Compute A1 = g ˆ z1 * Hˆ{− e1}
H e1 = pow (H, e1 , N2 )
A1 = pow ( g , z1 , N2 ) *

modinv ( H e1 , N2 ) % N2
e = random . r a n d r a n g e ( 0 , N)
e0 = ( e − e1 ) % N
i n v r 0 e 0 = modinv (

pow ( r0 , e0 , N) ,
N

)
z0 = u0 * i n v r 0 e 0 % N

e l s e :
# Case : r e a l i s C = g * r1 ˆN
r1 = r
# S i m u l a t e S0 branch by
# c h o o s i n g e0 , z0 a t random
e0 = random . r a n d r a n g e ( 0 , N)
z0 = random . r a n d r a n g e ( 1 , N)
C e0 = pow (C , e0 , N2 )
A0 = modinv ( C e0 , N2 )
# Real S1 branch :
u1 = random . r a n d r a n g e ( 1 , N)
A1 = pow ( u1 , N, N2 )
e = random . r a n d r a n g e ( 0 , N)
e1 = ( e − e0 ) % N
i n v r 1 e 1 = modinv (

pow ( r1 , e1 , N) ,

N
)
z1 = u1 * i n v r 1 e 1 % N

re turn ( A0 , A1 , e0 , e1 , z0 , z1 )

# V e r i f y t h e NIZK p r o o f
def v e r i f y p r o o f (C , p r o o f ) :

A0 , A1 , e0 , e1 , z0 , z1 = p r o o f
# Check c h a l l e n g e s sum c o r r e c t l y
i f ( e0 + e1 ) % N != ( e0 + e1 ) :

re turn F a l s e
# Check e q u a t i o n s
l e f t 0 = A0 * pow (C , e0 , N2 ) % N2
r i g h t 0 = pow ( z0 , N, N2 )
l e f t 1 = A1 * pow (

(C * modinv ( g , N2 ) ) % N2 ,
e1 , N2

) % N2
r i g h t 1 = pow ( g , z1 , N2 )
re turn ( l e f t 0 == r i g h t 0 )

and ( l e f t 1 == r i g h t 1 )

# Example usage :
# V o t e r e n c r y p t s v o t e m=0 or 1
m = random . c h o i c e ( [ 0 , 1 ] )
C , r = e n c r y p t (m)
p r o o f = p r o v e b i n a r y (C , m, r )
a s s e r t v e r i f y p r o o f (C , p r o o f ) ,

” P r o o f f a i l e d ! ”

In the above code, prove binary follows the mathematical
description. The verifier checks that the supplied tuple satisfies
A0Ce0 ≡ zN

0 and A1(C/g)e1 ≡ gz1 modulo N2. This ensures C en-
crypts either 0 or 1.

5 Security Analysis

This protocol satisfies key security properties:
Voter Privacy and Anonymity. Each ballot is signed with a ring
signature over the full voter set R, so the voter’s identity is hid-
den among all eligible voters [7]. The linkable tag only reveals if
the same secret key voted twice, not the voter’s identity. Under
the anonymity of the LRS scheme, an adversary cannot distinguish
which member signed a given ballot.
Ballot Secrecy. Votes v ∈ {0,1} are encrypted under Paillier, and
only the aggregated ciphertext is ever decrypted. No individual
vote is revealed. Semantic security of Paillier [2] ensures that ci-
phertexts do not leak vote values, assuming the authority’s secret
key remains secret.
Integrity and Non-Malleability. The NIZK proof π binds each
ciphertext to the statement ”it encrypts 0 or 1.” A malicious voter
cannot produce a ciphertext for an invalid vote without making the
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proof fail. Furthermore, the linkable ring signature σ binds the
ciphertext and proof to an eligible voter’s key: it is unforgeable
under the LRS security assumption (similar to group signature se-
curity) [7]. Thus no outsider can forge a valid ballot, and any tam-
pering with (C,π) will invalidate the signature or proof.
Double-Vote Prevention. If a voter attempts to vote twice, the
two ballots will yield the same linking tag in their ring signatures.
Observers will detect this via LRS-Link and reject the second bal-
lot. Hence each eligible key can produce at most one counted vote,
ensuring one-person-one-vote.
Public Verifiability. All ballots (C,π,σ) are posted publicly. Any-
one can verify every signature and proof without trusting any au-
thority. The correct tally can be computed by anyone using the
homomorphic property, then decrypted by the authority (who must
prove honest decryption). This end-to-end verifiability is analo-
gous to other homomorphic schemes [3], with the added benefit of
ring-based anonymity.

Table 1 contrasts this protocol with the Benaloh–Tuinstra multi-
authority scheme [4] and the Tsang–Wei ring-signature scheme [7].
It highlights differences in encryption, anonymity mechanism, and
proof obligations. Notably, only this scheme combines linkable
anonymity with a NIZK ballot correctness proof.

Table 1: Comparison of voting schemes: Benaloh–Tuinstra [4],
Tsang–Wei [7], and this proposed scheme.

Feature Benaloh–Tuinstra Tsang–Wei Proposed

Homomorphic Tally Yes (additive) No Yes (Paillier)
Signature/Auth. No Linkable Ring Linkable Ring
Vote Privacy Via mix/secret share Ring anonymity Ring anonymity
Double-Vote Check No Yes (linking) Yes (linking)
Ballot Correctness Assumed N/A Proven by NIZK
Receipt-Freeness Claimed but broken [5] Not addressed Yes (no receipts)
Public Verifiability Partial (multiple authorities) Yes Yes
Write-in Support No Yes No (binary only)

Notes: Benaloh–Tuinstra [4] uses secret-sharing among author-
ities for tally and claimed receipt-freeness, but was later shown
not fully receipt-free [5]. Tsang–Wei [7] uses linkable ring signa-
tures for anonymity and write-in votes. This scheme uniquely adds
an explicit proof that each ballot encrypts a single valid choice,
strengthening integrity without sacrificing privacy.

6 Evaluation

Let’s discuss the efficiency and concrete performance considera-
tions of this protocol. Let the number of voters be n. Each voter’s
ballot consists of one Paillier ciphertext (size O(logN2) bits), one
linkable ring signature (constant-size in Tsang–Wei’s scheme [7]),
and the NIZK proof (a few group elements of size O(logN)). Com-
munication per ballot is therefore O(logN) words.

Computational costs: Paillier encryption requires two exponen-
tiations mod N2. The NIZK proof generation involves roughly 2

exponentiations for commitments and 2 modular inverses (which
are equivalent to exponentiations via extended GCD). The ring sig-
nature generation in Tsang–Wei’s construction is O(1) exponenti-
ations (independent of ring size). Verification requires similar ex-
ponentiations (one per check). Thus overall, a voter performs O(1)
exponentiations per ballot, and verification cost per ballot is also
O(1). The final tally involves multiplying n ciphertexts and one
decryption: multiplication is O(n) multiprecision multiplications,
and decryption (modular exponentiation with exponent λ ) is mod-
erate cost.

In practice, using 2048-bit RSA groups (so logN ≈ 2048 bits),
each exponentiation is feasible on modern hardware. For example,
Paillier encryption or decryption in a 2048-bit group takes on the
order of milliseconds. The ring signature and NIZK exponentia-
tions add only constant overhead. Therefore, this protocol is prac-
tical for elections with thousands of voters, especially since proofs
can be verified offline after voting concludes. (Using threshold de-
cryption can distribute the final decryption cost if desired.)

7 Conclusion

This work has presented a comprehensive e-voting protocol that
integrates linkable ring signatures, homomorphic encryption, and
zero-knowledge proofs to achieve voter privacy, ballot integrity,
and verifiability. By signing ballots with an LRS scheme, this work
ensures that votes remain anonymous yet cannot be double-cast.
By encrypting votes with Paillier, this work keeps ballots secret
and allows public aggregation. By proving via NIZK that each ci-
phertext encodes a valid binary vote, this work prevents malformed
ballots without revealing voter choices. This protocol thus provides
a high level of security: ballots are private, votes are cast only once
and counted correctly, and the tally can be audited by anyone.

As future work, one could extend this framework to multi-
candidate elections (beyond binary votes) by using range proofs,
or improve efficiency via optimized NIZK techniques. Integrating
this scheme into real-world voting platforms (e.g. with threshold
decryption and authenticated bulletin boards) is another direction.
I believe the combination of linkable ring signatures and homomor-
phic encryption, now with provable vote integrity, offers a strong
foundation for next-generation privacy-preserving voting systems.

Source Code at Github

Here is the link of the paper source code on my GitHub:
https://github.com/ZKTally/ZKTally.
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